Cholinergic mechanisms in canine narcolepsy--I. Modulation of cataplexy via local drug administration into the pontine reticular formation.
نویسندگان
چکیده
Cataplexy in the narcoleptic canine has been shown to increase after systemic administration of cholinergic agonists. Furthermore, the number of cholinergic receptors in the pontine reticular formation of narcoleptic canines is significantly elevated. In the present study we have investigated the effects of cholinergic drugs administered directly into the pontine reticular formation on cataplexy, as defined by brief episodes of hypotonia induced by emotions, in narcoleptic canines. Carbachol and atropine were perfused through microdialysis probes implanted bilaterally in the pontine reticular formation of freely moving, narcoleptic and control Doberman pinschers. Cataplexy was quantified using the Food-Elicited Cataplexy Test, and analysed using recordings of electroencephalogram, electrooculogram and electromyogram. Cataplexy was characterized by a desynchronized electroencephalogram and a drop in electromyogram and electrooculogram activity. In narcoleptic canines, both unilateral and bilateral carbachol (10(-5) to 10(-3) M) produced a dose-dependent increase in cataplexy, which resulted in complete muscle tone suppression at the highest concentration. In control canines, neither bilateral nor unilateral carbachol (10(-5) to 10(-3) M) produced cataplexy, although bilateral carbachol, did produce muscle atonia at the highest dose (10(-3)). The increase in cataplexy after bilateral carbachol (10(-4) M) was rapidly reversed when the perfusion medium was switched to one containing atropine (10(-4) M). Bilateral atropine (10(-3) to 10(-2) M) alone did not produce any significant effects on cataplexy in narcoleptic canines; however, bilateral atropine (10(-2) M) did reduce the increase in cataplexy produced by systemic administration of physostigmine (0.05 mg/kg, i.v.). These findings demonstrate that cataplexy in narcoleptic canines can be stimulated by applying cholinergic agonists directly into the pontine reticular formation. The ability of atropine to inhibit locally and systemically stimulated cataplexy indicates that the pontine reticular formation is a critical component in cholinergic stimulation of cataplexy. Therefore, it is suggested that the pontine reticular formation plays a significant role in the cholinergic regulation of narcolepsy.
منابع مشابه
Cholinergic mechanisms in canine narcolepsy--II. Acetylcholine release in the pontine reticular formation is enhanced during cataplexy.
Cataplexy in the narcoleptic canine has been shown to increase after local administration of carbachol into the pontine reticular formation. Rapid eye movement sleep has also been shown to increase after local administration of carbachol in the pontine reticular formation, and furthermore, acetylcholine release in the pontine tegmentum was found to increase during rapid eye movement sleep in ra...
متن کاملNeuropharmacology and neurochemistry of canine narcolepsy.
It is believed that narcolepsy involves abnormalities of rapid eye movement (REM) sleep, especially of REM sleep atonia. Compelling evidence suggests that the regulation of REM sleep and REM sleep atonia involves a reciprocal interaction of cholinergic and monoaminergic systems. Using our canine model of narcolepsy and a pharmacological approach, we have previously demonstrated a similar intera...
متن کاملMuscle atonia is triggered by cholinergic stimulation of the basal forebrain: implication for the pathophysiology of canine narcolepsy.
Narcolepsy is a sleep disorder characterized by excessive daytime sleepiness and rapid eye movement (REM) sleep-related symptoms, such as cataplexy. The exact pathophysiology underlying the disease is unknown but may involve central cholinergic systems. It is known that the brainstem cholinergic system is activated during REM sleep. Furthermore, REM sleep and REM sleep atonia similar to cataple...
متن کاملModulation of cortical activation and behavioral arousal by cholinergic and orexinergic systems.
Multiple neuronal systems contribute to the promotion and maintenance of the wake state, which is characterized by cortical activation and behavioral arousal. Using predominantly glutamate as a neurotransmitter, neurons within the reticular formation of the brainstem give rise to either ascending projections into the forebrain or descending projections into the spinal cord to promote through re...
متن کاملLocal administration of dopaminergic drugs into the ventral tegmental area modulates cataplexy in the narcoleptic canine.
Cataplexy in the narcoleptic canine may be modulated by systemic administration of monoaminergic compounds. In the present study, we have investigated the effects of monoaminergic drugs on cataplexy in narcoleptic canines when perfused locally via microdialysis probes in the amygdala, globus pallidus/putamen, basal forebrain, pontine reticular formation and ventral tegmental area of narcoleptic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience
دوره 59 3 شماره
صفحات -
تاریخ انتشار 1994